MINISTERUL SĂNĂTĂȚII AL REPUBLICII MOLDOVA

UNIVERSITATEA DE STAT DE MEDICINĂ ȘI FARMACIE "NICOLAE TESTEMIȚANU"

O. MALÎGA, N.ROTARU, A. OBADĂ

MEDICAL IMAGING IN TABLES AND ALGORITHMS

Guidelines

CHIŞINĂU

2015

CZU: 616-073.75(076) M 18

Approved by Central Methodological Council of "Nicolae Testemițanu" USMF (Report No. 3 CMC of 07.02.2013)

Authors:

Oxana Malîga – lecturer of the Chair of Radiology and Medical Imaging of "Nicolae Testemiţanu" USMF, DM

Natalia Rotaru – head of the Chair of Radiology and Medical Imaging of "Nicolae Testemiţanu" USMF, DM, PhD

Anatol Obadă – lecturer of the Chair of Radiology and Medical Imaging of "Nicolae Testemițanu" USMF

The Guidelines touch upon a very important problem of healthcare of patients in absolutely all areas of medicine, because not a single area of modern medicine can be imagined to be successful without the use of data obtained through medical imaging methods.

Methodical materials contain tables, figures and algorithms that highlight key moments in medical imaging and facilitate their understanding.

The new Guidelines are recommended for the 3rd-year students of Faculty of Medicine, which only start studying clinical disciplines, but it will be also useful for the 6th-year students, who resume studying the subject "medical imaging" on the basis of clinical knowledge to master the art of using imaging methods in order to obtain maximal information in each case.

Reviewers:

- *Nicolae Nalivaico* DM, associate professor of the Chair of Radiology and Medical Imaging of "Nicolae Testemițanu" USMF
- Valeriu Pripa dr. med., associate professor of the Chair of Radiology and Medical Imaging of "Nicolae Testemiţanu" USMF, Head of the Department of Radiology of PMSI Republican Clinical Hospital

DESCRIEREA CIP A CAMEREI NAȚIONALE A CĂRȚII

Imagistica medicală în tabele și algoritme: Recomandări metodice/ O.Malîga, N.Rotaru, A.Obadă.. – Chișinău (Tipogr. Ch.: CEP "MEDICINA" 2015) 62 p. ex. ISBN 978-9975-4437-8-4. 616-073(076.5) M 18

CONTENTS

Intro	oduction	4
I.	MEDICAL IMAGING. COMPONENT PARTS. METHODS OF EXAMINATION	5
II.	CHEST IMAGING	18
III.	CARDIOVASCULAR IMAGING	32
IV.	IMAGING OF DIGESTIVE TUBE AND HEPATOBILIARY SYSTEM	40
V.	IMAGING OF OSTEO-ARTICULAR SYSTEM	49
VI.	IMAGING OF KIDNEYS AND URINARY SISTEM	53
Bibl	iography	62

INTRODUCTION

Medical imaging is the branch of medicine that deals with exploration of the organs and the systems of the human body for diagnostic purposes, evaluation the treatment effectiveness and prevention of pathologic processes using electromagnetic waves and ultrasound.

On the other hand and on the basis of the name, medical imaging can be defined as diagnostic imaging, visualization of normal and pathological structures of the human body.

For years, doctors could only dream of being able to view pathological changes in the patient's body. The first opportunity to realize this dream occurred in 1895, with the discovery of X-rays by W.C.Roentgen. Radiology had remain the only method of viewing up to the 50s, when the clinical use of methods of ultrasound and nuclear medicine started. The term "medical imaging" itself arose when digital image processing became possible.

At present it is impossible to imagine everyday medical practice without the use of imaging methods in order to make a diagnosis and to check the effectiveness of treatment. Knowledge of these methods is essential for a successive and effective activity of each physician, aside from his specialty.

This guideline does not pretend to replace manuals and intends to facilitate the introduction in the subject and further mastering medical imaging by students.

I. MEDICAL IMAGING. COMPONENT PARTS. METHODS OF EXAMINATION

Table 1.1

Year	Event			
1895	Discovery of X-rays (W.C.Roentgen)			
1896	Discovery of radioactivity (H.Becquerel)			
1901	Rontgen receives the Nobel Prize in Physics for the discovery of x-rays			
1905	The first book on Chest Radiography is published			
1918	G. Eastman introduces radiographic film			
1920	The Society of Radiographers is founded			
1934	Joliot and Curie discover artificial radionuclides			
1937	The first clinical use of artificial radioactivity is done at the University of California- Berkeley			
1946	Nuclear medicine is founded			
1950	The first clinical use of ultrasonography (W.D. Keidel)			
1950′	Development of the image intensifier and X-ray television			
	Wide-spread clinical use of nuclear medicine starts			
1962	Introduction of SPECT and PET methods			
1967	The first clinical use of MRI takes place in England			
1972	CT is invented by British engineer Godfrey Hounsfield			
1977	The first human MRI images are produced			
1979	Comack and Hounsfield receive the Nobel Prize in Medicine for computed axial tomography			
1975- 1985	Advancement of clinical use of two-dimensional ultrasonography			
1985	Clinical use of Color Doppler begins			

KEY DATES IN RADIOLOGY HISTORY

COMPONENT PARTS OF MEDICAL IMAGING

Method	Radiology	Ultrasonography	Magnetic resonance	Nuclear medicine	Thermography
Characteristics			inaging		
Energy	X-rays	Acoustic waves	Magnetic field and radio waves	Gamma rays	Infrared rays
Source of energy	X-ray tube	Piezoelectric crystal	Permanent magnet, antennas	Radionuclide	Human body
Morphological investigation	+++	+++	+++	+ - ++	++
Dynamic investigation	+	++	+	+++	-
Terminology	Opacity Lucency (hyperdensity, hypodensity in computed tomography)	Hyperechoic Hypoechoic	Hyper-intensive, Hypo-intensive	Hot area Cold area (node, spot)	
Ionizing action	+	-	-	+	-
Contraindications	Pregnancy	-	Implanted metallic dispositives	Pregnancy	-
Contrast media	Substances with higher or lower density	Substances with micro bubbles	Paramagnetic substances		

X-RAY PROPERTIES

Common for all kinds of	Travel straight ahead, along the straight line				
electromagnetic waves	Travel with the velocity of light (300 000				
	km/sec)				
	Travel in all directions				
Passing through the human body	Penetration				
	Absorption,	Density			
	which depends Thickness		58		
	on:	Frequency (wavelength)			
	Dispersion				
Chemical photogr	Chemical photographic action				
Effect of fluorescence					
Ionizing effects	In the air				
	In the human b	oody	Somatic		
	Genetic		Genetic		
Cannot be detected by sense organs					

X-ray tube

Table 1.4.

NATURAL CONTRAST LEVELS

(from minimal to maximal density)

Level	Substance with appropriate density
1	Air
2	Fat tissue
3	Liquids / soft tissues / parenchymatous organs
4	Bones
5	Metal

Table 1.5.

UNITS OF MEASURE FOR IONIZING RADIATION

Characteristics. Level of detection of radioactivity.	Old unit	SI unit	Correlation old unit/ SI unit
Radioactivity of the source of ionizing radiation	Curie (Cu)	Becquerel (Bq)	1Bq=0,027mCu
Air	Roentgen (R)	Coulomb/kilogram (C/kg)	500R=129mC/kg
Absorbed dose (for X-rays)	Rad (Radiation Absorbed Dose)	Grey (Gy)	
Equivalent dose (independent of the nature of ionizing radiation)	Rem (Rad Equivalent Man)	Sievert (Sv)	1Sv=100rem

Table 1.6.

CHARACTERISTICS OF RADIOGRAPHIC IMAGE

Characteristics	Meaning			
Contrast	Correlation between white and black			
Contrast	Variation of shading set between the most dark and the			
	most white point of the image			
Definition	Clearness of the contour lines of the image.			
	The contour lines should be: well-defined			
	clear			
	precise,			
	an unclear contour may mean a sign of pathology			
Resolution	Minimal distance between 2 well distinguishable objects			
	(when these may be appreciated like 2 different objects)			

LAWS OF FORMING OF RADIOGRAPHIC IMAGE

Law	Cause	Conclusions	
Conic projection	X-ray beam has a conical shape with its top at the X- ray tube and its base on the radiographic plate	Radiographic image is always larger than the object Closer the object is to the screen (x-ray film), the image is less increased	
Summation of plans	A radiographic image is a two-dimensional image of a three-dimensional object	 2 items, located in the same plane (in the way of x-ray) but at different distances from the X-ray tube and film overlap and project simultaneously When tilting the X-ray tube, the image of the object located closer to the tube, will be shifted more 	
		to the tube, will be shifted more towards the periphery of the screen (parallax effect) and so two objects will be projected separately	
Tangential projections	ngential X-rays travel straight ojections ahead, along the straight line	The image of a plane object located parallel to the screen is always increased but not deformed	
	X-rays are neither reflected nor refracted by structures that meet	The image of a plane object located oblique to the screen is increased and deformed	
		The image of a plane object located perpendicularly to the screen is linear	

RULES OF IMAGE POSITIONING (ORIENTATION)

Method	Conceivable position of the patient, for the radiographic image orientation
Radiography	Vertical (cranial upward, caudal downward), face to face (left of the patient is on right of the examiner, right of the patient is on left of the examiner) or profile for lateral projection
CT, MRI	The patient is positioned in dorsal decubitus, the examiner looks at the patient being at his feet (for axial images anterior- upward, posterior-downward, left-on right, right-on left)

Table 1.9.

CLASSIFICATION OF RADIOLOGICAL CONTRAST MEDIA

Radionegative (lucent, nonopaque), low density: gases				
Radiopositive (opaque): high	Insoluble (barium sulfate)			
density	Liposoluble (Liposoluble (iodinated CM)		
	Water- soluble	The elimination mainly through biliary ways		
	(iodinated	The elimination	Ionic	
CM) mainly through Non-ionic urinary ways				
Double contrastation (using both radiopositive and radionegative media)				

Figure 1.2

Plane (conventional, linear) tomography.

- The patient is immovable.
- X-ray tube and screen are moving synchronously in opposite directions, pivoting around an axis fixed to the depth chosen for investigation.

Figure 1.3.

Computed tomography

- The patient is immovable.
- X-ray tube and detectors move around the patient
- X-ray beam is fan-shaped collimated

COMPARATIVE ANALYSIS OF PLANE TOMOGRAPHY AND COMPUTED TOMOGRAPNY

Characteristics	Plane tomography	Computed tomography
The presence of the image of the structures located above and below the plane of section	Indistinct, but present	Not present
Grades (levels) of contrast	5 (those of natural contrast)	≥2000 (Hounsfield scale)
Real plan of section	Frontal, most often	Axial
Possibility of 3D reconstruction	-	+
Cost of investigation	Relatively low	High

Figure 1.4.

Piezoelectric crystal and piezoelectric effect

PROPERTIES OF ULTRASOUND

Propagation	Rectilinear				
	The velocity of propagation of ultrasound in a homogeneous medium at a given temperature is constant				
	The mean velocity of propagation of ultrasound in biological media is 1540 m/s				
When going through the human body	Reflection	It occurs when the object size exceeds ultrasonic wavelength			
		Occurs at a transition zone between two media with different acoustic impedance	The greater the difference in acoustic impedance between two media, the more ultrasound is reflected		
			In regions where acoustic waves meet air or bone (large difference in acoustic impedance) investigation becomes practically impossible		
	Absorption Refraction Dispersion				

Echography (based on the reflection of ultrasound from immoveable structures): mode	Doppler-echography (based on the reflection of ultrasound from moving structures): Doppler methods
• A (amplitude)	• Pulsative
• M (motion)	Continual
• B (brightness, two-	Color Doppler
dimensional echography)	• Tissular Doppler (tissue in
• 3D	motion)
• 4D	• Power Doppler (analyzes very
	low flows)

Methods of ultrasonography

Table 1.13.

CHARACTERISTICS OF IONIZING RADIATION

Characteristics	Nature	Electric	Mass	Penetration in
		charge		substances
Ionizing				
radiation				
a particles	Identical with	+2	4 atomic	Very low –
	nucleus of		mass	0,5 mm
	helium			
β particles	Electron or	-1 or +1	of electron	More than α –
	positron			0,5 cm
γ-rays	Electromagnetic	-	0	High
	waves			
X-rays	Electromagnetic	-	0	High
	waves			

MAIN ADVANTAGES AND DISADVANTAGES OF DIFFERENT IMAGING METHODS

Method	Advantages	Disadvantages
Radiography	 easily accessible visualizes fine details can serve as forensic document, allows creating archive lower radiation dose 	 does not allow functional investigation does not allow guiding invasive manipulations
Fluoroscopy	 Allows functional investigation Allows guiding invasive manipulations 	 High radiation dose Visualizes less details Relatively subjective Cannot serve as forensic document
Computed tomography	 The possibility of studying small anatomical structures including several mm in diameter Elimination of summation Possibility of reconstruction in different sections and 3D Objective densitometric analysis of structures Differentiating density variation of 0.4-0.5% Allows guiding invasive manipulations 	 Ionizing effect High cost Only transversal (axial) sections are primary images

USG	 Non-invazive Does not use ionizing radiation Painless, harmless to the patient Easily accessible Relatively low cost Portable, can be performed under any circumstances (to bedside, in the operating room, etc.). Can be performed in any 	 Operator-depending Impossibility to investigate the structures covered by air, bone, fat
	patient and probe positionCan be repeated as often as necessary	
MRI	 Does not use ionizing radiation Allows different plans of scanning Excellent soft tissue visualization Excellent view of the brain and spinal cord Does not require contrast agents to visualize blood vessels, biliary ducts, heart 	 Very high cost Relatively less accessible Duration of scanning is very long Impossibility of investigation of the patients having metallic implants Insufficient view of calcified structures

II. CHEST IMAGING

Scheme 2.1.

EXAMINATION OF A CHEST RADIOGRAPH

1. Identification	Name of the patient Date of examination
2. Estimation of the quality of the film	Position of the patient Exposition
3. Examination of bony structures and soft tissues	
4. Examination of the mediastinum	Cardiac silhouette; Pulmonary hilum Identification of the trachea and the main bronchi
5. Examination of pleura	Parietal, Diaphragmal, Visceral pleura. Fissures
6. Examination of lung fields	From cranial to caudal Comparison right-left Pulmonary vasculature.
7. Semiological analysis. Additional structures	

SIMPLE CHEST X-RAY. PULMONAY FIELDS AND ZONES

Pulmonary	fields		Pulmonary zones		
Pulmonary	Limits		Pulmonary	Limits	
field	Superior	Inferior	zone	Medial	Lateral
Apical	The upper thoracic contour	Clavicle	Perihilar (intern, medial)	Mediastinal shadow board	The line drawn through the middle of the clavicle shadow that projects over the lung field
Superior	Clavicle	The anterior arch of the 2^{nd} rib	Central (medial)	The line drawn through the middle of the clavicle shadow that projects over the lung field	Medioclavicular line (drawn from the intersection of the shadow of the clavicle with the chest wall to the diaphragm)
Medial	The anterior arch of the 2^{nd} rib	The anterior arch of the 4 th rib	Peripheral (lateral)	Medioclavicul ar line (drawn from the intersection of the shadow of	Lateral chest wall
Inferior	The anterior arch of the 4 th rib	Diaphragm		the clavicle with the chest wall to the diaphragm)	

SIMPLE CHEST X-RAY. BASIC ANATOMICAL LANDMARKS

	Anatomical structure	Landmark on standard chest
		radiograph
Frontal	The most left point of the cardiac	About \approx 1 -1.5 cm medial from
view	shadow	the left medioclavicular line
	The most right point of the	About $\approx 1 - 1.5$ cm lateral from
	cardiac shadow	the right lateral contour of spinal
		cord
	The upper point of the right	Anterior arch of the $5^{th} - 6^{th}$ rib,
	hemidiaphragm	inspiration
	Left hemidiaphragm	1-2 cm lower than the right one
	Bifurcation of trachea	T5
		Angle 45-70°
		Right bronchus is more vertical
		than the left one
	Aortic arch (upper level of the	T3
	cardiac shadow)	
	Right pulmonary hilum	Medial zone
		Between the anterior arches of the
		2 nd and the 4 th rib
	left pulmonary hilum	About $\approx 2 \text{ cm}$ (or width of a rib)
		upper than the right one
Lateral	Oblique fissure (right lung)	From T4 via right pulmonary
view		hilum to the upper point of the
		right hemidiaphragm
	Horizontal fissure (right lung)	Level of the anterior arch of the
		4 th rib
	Oblique fissure (left lung)	From the intervertebral disk 13-
		14 via the left pulmonary hilum to
		the upper point of the left
		hemidiaphragm

PULMONARY SEGMENTS

EXAMINATION OF PULMONARY OPACITY

1. Localization	segment, lobe, lung
2. Number	single, multiple disseminated
3. Form	Corresponding to anatomical structures (lob, segment); Rounded Ring-shaped Linear Triangle Irregular
4. Dimensions	Extensive: total (al the hemithorax) subtotal: 2/3 of hemithorax Limited: up to 1/3 of hemithorax Nodular: less then 2.5 cm
5. Borders	ill-defined well-defined regular, irregular
6. Structure	homogeneous, heterogeneous
7. Mediastinum	Without displacement Displaced towards the opacity Displaced from the opacity
8. Mobility (for fluoroscopy)	Immobile Mobile by itself Mobile secondary to the movements of other structures

Algorithm 2.1.

Total or subtotal opacity

Algorithm 2.2.

Algorithm 2.5.

Nodular opacity

Algorithm 2.6.

Pulmonary hyperlucency

Examination of changers in pulmonary hilum

The degree of bronchial obstruction	Changes in ventilation	Radiological symptom
Partial obstruction	The amount of the air inhaled through the affected bronchus and exhaled is the same, but less than normal, reducing the volume of the lung	Diminution of lung transparence
Valve obstruction	The air is inhaled through the affected bronchus, but cannot be exhaled being accumulated in the lung	Hyperlucency
Complete obstruction	Bronchus is closed, no air is inhaled through it	Opacity

Disturbance of bronchial patency

Figure 2.1.

- a) Partial obstruction
- b) Valve obstruction
- c) Complete obstruction

RADIOLOGICAL SEMIOLOGY OF PULMONARY PATHOLOGY SYNDROMES

Radiological	Opacity	Total/subtotal		
changers:		Limited		
		Rounded		
		Ring-shaped		
		Nodular		
	Hyperlucency			
	Changers of pulmonary hilum			
	Changers of pulmonary pattern	Decreasing		
		Accentuation		
		Deformation		
Localization of	Parietal syndrome	Soft tissue pathology		
pathological changers:		Bone pathology		
	Pleural syndrome	Pleural effusion		
		Pneumothorax		
		Hydropneumothor	rax	
		Pleural calcification	on	
	Mediastinal	Presence of air in		
	syndrome	mediastinum		
		Presence of liquid	in	
		mediastinum		
		Presence of anoma	alous tissue	
		in mediastinum		
	Pulmonary syndrome	Alveolar		
		Interstitial		
		Bronchial		
		Vascular		
		Parenchymatous:	Nodular	
			Cavitary	

III. CARDIOVASCULAR IMAGING

Figure 3.1.

Evaluation of cardio-thoracic ratio (CTR)

• Cardio-thoracic ratio (CTR) is the ratio between the maximal transverse diameters of cardiac shadow and of the chest, measured on a chest X-ray in posterior-anterior projection.

Table 3.1.

Normal CTR

Age	Normal CTR
New-born	up to 0,58
Adolescents and adults	0,44-0,48
Elderly	0,50-0,55

Normal	pulmonary	circu	lation
	I J		

Pulmonary circulation particularities	Normal pulmonary pattern (pulmonary vasculature)
 Low blood pressure in pulmonary vessels (25/10 mm Hg) Low vascular resistance, Blood depositing function Blood vessels of both systemic and pulmonary circulation are present Arterio-venous and veno-arterial anastomoses are present (normally, blood circulation via anastomoses is ≤ 1% of minute-volume of pulmonary circulation) Dependent on respiratory motions 	 Consists of pulmonary arteries and veins (in young and adult persons; in elderly persons (after 50-55 years old) it includes interstitial connecting tissue as well Dichotomic division of vessels (each divides in 2) Diameter of each following vessel is 2 times less than this of the previous In orthostatic radiograph pulmonary pattern is more apparent in inferior regions 1,5-2 cm to the thoracic wall, pulmonary vasculature is no more seen (capillary segment) Radial direction of the pulmonary veins in basal regions Horizontal direction of the pulmonary veins in basal regions Normal pulmonary hilum in adult person: width of right hilum is ≤ 14 - 15 mm and is the same or 1-2 mm less than the width of the space between the right hilum and the cardiac shadow

Pulmonary patters	ı disturban	ces in cardi	ovascular	pathology
-------------------	-------------	--------------	-----------	-----------

Syndrome	Cause	Pulmonary pattern disturbances	In which pathology it may occur
Hypovolemia	Decrease of the amount of blood that comes in pulmonary circuit in systole	 Pulmonary hyperlucency Narrowing of peripheral pulmonary arteries Narrowing of pulmonary hilum, its structure is unchanged (sometimes it is difficult to visualize) Pulmonary artery convexity may be extruded, concave or normal 	Congenital heart diseases with pulmonary hypovasculature
Hypervolemia	Increase of the amount of blood that comes in pulmonary circuit in systole	 Dilation of pulmonary vessels Transparent lung fields Dilation of pulmonary hilum, its structure is unchanged Nodular opacities in the region close to hilum (transversal section of dilated vessels) The waist of the heart is diminished, pulmonary artery convexity is extruded 	Congenital heart diseases with pulmonary hypervasculature

Venous congestion	Disturbances of pulmonary venous return	 Homogenization of pulmonary hilum Diminution of transparence of lung fields Unclear contour of blood vessels and bronchi Kerley lines 	 Congenital or acquired mitral stenosis Mitral insufficiency Left ventricle insufficiency Total cardiac failure
Pulmonary hypertension	Increase of pulmonary vascular resistance	 Dilation of pulmonary hilum, its structure is unchanged Nodular opacities in the region close to hilum (transversal section of dilated vessels) Decrease of pulmonary vasculature in peripheral regions Pulmonary artery convexity is extruded Narrowing of pulmonary veins 	Diseases which lead to hypervolemia and venous congestion in the absence of the opportune treatment

Figure 3.2.

Cardiac convexities. Simple chest X-ray

Pathological cardiac configurations

Cardiac	Mitral	Aortic	Tricuspid
configuration Structures			(triangular, trapezoid, cardiomyopathic)
Right atrio-vasal angle	Displaced cranially	Displaced caudally	Displaced cranially
Waist of the heart	Smoothed, Pulmonary artery convexity is extruded	Extruded	Smoothing of all cardiac convexities
Aortic knob	Diminished or not seen	Extruded	
Dilation of the heart shadow	May be LV dilation. May be dilation of RA convexity and double contour because of LA dilation	LV dilation May be dilation of the ascending aorta	The heart shadow is dilated bilaterally, "lies" on the diaphragm
Pathologies	 Mitral valvulopathy Atrial septal defect Persistent ductus arteriosus 	 Aortic valvulopathy Coarctation of aorta Arterial hypertension Tetralogy of Fallot 	 Important pericardial effusion Polyvalvulopathy including that of the tricuspid valve Dilative cardiomyopathy

Possibilities and value of imaging modalities in assessing cardiac pathology

	Imaging modality					
Signs	Radiological contrast methods	СТ	ЕСНО	MRI	Nuclear medicine	Priority method
Morphological changes	++	+++	+++	+++	+	ECHOCG
Functional status	++	++	+++	+++	++	ECHOCG
Function of the valves	+	+	+++	+++	-	ECHOCG
Coronary arteries	+++	++	-	++	-	Coronary angiography
Myocardial perfusion and metabolism	-	+	-	+++	+++	Nuclear medicine
Thoracic aorta	++	+++	++	+++	+	CT, MRI

Sequence of primary investigation of a patient with cardiovascular pathology

- 1. Anamnesis
 - Clinical examination
- 2. Electrocardiogram
- **3.** Simple chest X-ray
- **4.** Echocardiography
- 5. <u>Diagnostic conclusion</u>.
- 6. If diagnosis is not clear, functional investigation and/or additional imaging methods using:
 - Angiography
 - CT
 - MRI
 - Myocardial scintingraphy

IV. IMAGING OF DIGESTIVE TUBE AND HEPATOBILIARY SYSTEM

Table 4.1.

BASIC METHODS OF THE DIGESTIVE TUBE CONTRASTATON (BARIUM MEAL TECHNIQUES)

Method	Contrast agents	Object to be visualized
In thin layer (small amount of contrast media)	Radiopositive (barium sulphate)	Relief of mucosa, folds.
Double contrast	Radiopositive (barium sulphate) + radionegative (air)	Thin relief of mucosa (area gastrica). Visualization of vegetations.
In tight filling	Radiopositive (barium sulphate)	Shape, position, dimensions, peristalsis of the digestive tube segment.

Figure 4.1.

Topography of digestive tube organs

Figure 4.2.

Projection of the abdominal parenchymatous organs Simple abdominal X-ray

Table 4.2.

Simple abdominal X-ray in acute abdominal syndrome (Orthostatic position)

Cause of acute abdominal syndrome	Radiological findings
Perforation of a cavity organ	Pneumoperitoneum (subdiaphragmal free air in peritoneal cavity)
Intestinal occlusion	Hydro-aeric levels

Table 4.3.

OesophagusThe posterior mediastinumLongitudinalMaximal width up to 2-3 cmBasic physiological narrowings: • Pharyngoesophage	al
mediastinum width up to narrowings: 2-3 cm • Pharyngoesophage	al
2-3 cm • Pharyngoesophage	al
(level of the VI-th	
Length cervical vertebra)	
usually •At the level of the	
about 25cm aortic arch	
• At the level of the	
tracheal bifurcation	1
Diaphragmal	
StomachThe left upperLongitudinal in	
part of the the region of	
abdominal lesser curvature,	
cavity in the region of	
greater curvature	
the folds are	
oblique and may	
form an	
Duadanum Dahind tha Langitudinal in Langth 24 A fived segment	
Duodenum Benniu the Longitudinal III Lengui - 24 A fixed segment stomach duodenal hulb cm (excepting the hulb)	
caudally from transversal in Forms Treitz angle	
the pyloric the rest of the with jejupum	
region segments	
Jeiunum Predominantly Transversal Total length	
in the left part ("like bird's is 2-3 m in a	
of the feather"), living	
abdominal evident person;	
cavity about 6 m in	
IleumPredominantlyTransversaldead body	
in the small (,,like bird's	
pelvis feather"), less	
evident, not	
clearly viewed	
in the distal	
regions	
Colon Peripheral It is possible to see	
regions of the naustra coll,	ر ار
abuomman sometimes - taema c	011

RADIOLOGICAL ANATOMY OF DIGESTIVE TUBE ORGANS

Table 4.4.

PASSAGE OF CONTRAST MEDIA VIA DIGESTIVE TUBE

Segment of digestive tube	Beginning of appearance of contrast media in the organ after oral use	Complete evacuation of contrast media
Oesophagus	Immediately	5-7 seconds
Stomach	Several seconds	From 1.5-2 to 4 hours; most often about 1.5 hours
Duodenum	30 seconds	
Jejunum	40 seconds	3-5 hours
Ileum	About 1.5 hours	8-9 hours
Colon	3-4 hours (ileocecal passage and cecum)	Complete contrast enhancement of all parts of the colon within 18-24 ore

PATHOLOGICAL CHANGES OF DIGESTIVE TU	BE
--------------------------------------	----

FUNC	CTIONAL		MORPHOLOGIC		
Changes	Hypertonia	Changes	Ptosis		
of tonus	Hypotonia	of position	Ascension (hernias including)		
	Atonia	_	Displacement		
	Spasm		Torsion		
	-		Traction		
Changes	Hyperkinesia				
of	Hypokinesia	Changes of	Pathological	mobility of	
peristalsis	Akinesia	mobility	normally fix	ed segments	
-			Decreased m	obility of normally	
			mobile organ	1S	
Changes	Hypersecretion	Changes	Length I	Dolichosegments	
of		of	I	Brachisegments	
secretion		dimension		-	
Changes	Acceleration		Width N	Megasegments	
of transit	Slowing		S	Stenosis	
	_				
	·	Changes	Minus- I	Recess	
		of contour	our <u>filling</u> Incisure		
			Amputation		
			Impression		
			Rigidity		
			Plus- 1	Niche	
			filling I	Diverticulum	
				Spicules	
				-	
			Changes of	shape	
		Changes	Fold	Hypertrophy	
		of relief	dimensions	Atrophy	
			Anomalous	Deviation	
			fold	Convergence	
			orientation	Interruption	
				Disorganization	
				-	

Table 4.5.

DIFFERENCIAL DIAGNOSIS OF DIGESTIVE TUBE STENOSES

Characteristics	Benign stenosis	Malignant stenosis
Length	Long	Short
Number	Single or multiple	Single
Transverse	Axial	Asymmetric
Change of size increase:	Progressive	Sharp
Folds	Not interrupted	Interrupted, disorganized
Other possible signs		Rigidity

Radiological	investigation	of the	biliarv	tract
1. autorogram	in vestigation	or the	omai y	uuuu

Contrast method	The way of introduction	Visualized
· · · · · · · · · · · · · · · · · · ·	of contrast agent	structures
Without contrast (simple abo	dominal X-ray)	Radiopositive concrements in gallbladder and bile ducts
Peroral cholecystography	Per os	Gallbladder
Intravenous	Intravenous	Gallbladder and bile
cholecystocholangiography		ducts
Endoscopic retrograde	By catheter introduced in	Biliary tree,
cholagniopancreatography	the ductus choledochus	pancreatic duct
	through Oddi sphincter,	
	introduced in the	
	duodenum	
D (1 (endoscopically	D'1 1 4
Percutaneous transhepatic	In bile ducts by	Bile ducts,
cholanglography	the line	sometimes
Deview eventing and	Dry the path stor (typh t	Bile duete
perioperative and	By the catheter (tub t	Blie ducts
cholongiography	cysticus perioperatively	
cholanglography	(usually during	
	(usually during cholecystectomy) The	
	investigation is	
	nerformed during surgery	
	or in the nostonerative	
	period	

IMAGING SIGNS OF LIVER PATHOLOGY

<u>Normal liver</u> (Ultrasonography)	Homogenous Micronodular structure	
	Tubular formations with narrow walls in the region of the hilum	Portal vein Artery Hepatic duct
<u>Diffuse liver</u> diseases	Liver dimensions	Enlarged Diminished
	Structure	Heterogeneous
	Echogenity (if USG performed)	Hyperechoic Hypoechoic Calcification
	Vascularization	Unchanged Portal hypertension
Focal liver	Dimensions	
<u>uiscases</u>	Localization	Lobe Segment
	Number	Single Multiple
	Structure	Homogenous Heterogeneous
	Density	Solid Fluid
	Contour	Well-defined (regular or iregular) Ill-defined

Indirect signs	Deformation of contours
	Impression/amputation of vascular and/or biliary structures
Associated changes	Cirrhosis Steatosis Portal hypertension

V. IMAGING OF OSTEO-ARTICULAR SYSTEM

Scheme 5.1.

Types of fracture

Mechanism of	Mechanical	power				
fracture	Stress ("tired")					
	By firearm					
	Pathologic f	ractures				
Relation between the	Direct					
place of application of force and the place of fracture	Indirect					
Number	Single					
	Multiple					
	Comminuted					
	Simultaneou	IS				
Line of fracture	<u>Complete</u>	Direction of line of fracture	Transversal			
			Oblique			
			Spiral			
			Longitudinal			
			In shape of T, V, Y			
	Incomplete	"Green steak"				
		Subperiosteal				
		Depressed				
		Fissure				

Radiological	changes	of bones	and	ioints
1 uu ui vi v Si vui	changes	or bones		Junus

Bone changes	Changes of shape Changes of dimension	Exostosis Oedostosis ("bone swelling") Scoliostosis Atrophy Hypoplasia Hyperplasia Dysplasia			
	Changes of	Destructive	Ostoonousia		
	structure	Destructive	Osteoporosis		
			Osteolysis		
			Osteodestruction		
			Osteonecrosis		
		Constructive	Osteosclerosis		
	Changes of	Linear	Linear		
	periosteum: Periostitis /periostosis	Lamellar			
		Dentate			
		Spicular			
		Spur periosteum ("cap")			
	Heterogeneous ossification				
	Changes of	Traumatic	Fracture		
	axis and position		Luxation		
		Scoliostosis			

Articular changes	Changes of	Thickness	Widening	
<u>changes</u>	space		Narrowing	
	•		Disappearance	
		Shape		
		Transparence		
	Changes of artic	ular surfaces		
Changes of	Volume	Thickening		
<u>soft tissues</u>		Reduction in size Dislocation		
	Structure	Induration		
		Calcification		
	Aetiology Primitive (of		Inflammation	
		tissue itself)	Trauma	
			Tumour	
		Secondary to bone pathology		

The most frequent bone tumours

Benign tumours		Malignant tumours		
Name	Tissue	Name	Tissue	
Osteoblastoclastoma Osteoid osteoma Osteoma	Bone	Osteosarcoma	Bone	
Chondroma Chondroblastoma Chondromyxoid fibroma	Cartilage	Chondrosarcoma	Cartilage	
Osteochondroma	Bone and cartilages	Sarcoma Ewing	Reticuloendothelial	
Myxoma Lipoma Fibroma	Connective tissue	Reticular sarcoma	Reticuloendothelial	
Angioma	Vascular structures	Angiosarcoma	Vascular structures	
Eosinophilic granuloma	Reticuloidal, eosinophils	Periosteal fibrosarcoma	Periosteum	

VI. IMAGING OF KIDNEYS AND URINARY SISTEM

Figure 6.1.

Simple abdominal X-ray. Variants of concrements (stones) localization

- 1. Renal stone in the superior calyx
- 2. Renal stone in the middle calyx
- 3. Renal stone in the inferior calyx
- 4. Concrement in the renal pelvis
- 5. Concrements in the ureter
- 6. Triangular concrement in the ureter
- 7. Calculus in the bladder-urethral orifice

- 8. Multiple small stones in the inferior part of ureter
- 9. Calculi in the urinary bladder
- 10.Calculi in the prostate
- 11.Phleboliths
- 12. Transverse apophysis ossification of the 3rd lumbar vertebra
- 13.Calcification in the right adrenal gland
- 14. Pancreatic calcifications
- 15. Splenic calcification
- 16.Calcified costal cartilage
- 17.Biliary concrements
- 18. Appendicular concrement
- 19. Calcified retroperitoneal lymph node
- 20. Calcified lymph nodes
- 21.Calcified fibroma
- 22.Calcified renal vessel
- 23.Calcified mesenteric lymph node
- 24. Calcified splenic artery
- 25.Calcified wall of a cyst (in the left kidney)
- 26.Calcified hydatic cyst (in the liver)

Renal topography

a)

b)

Figure 6.3.

Renal structure

Age	Position of kidney	Orientation of renal pelvis
During intrauterine period	In the pelvis	Lateral
< 4 years	Gradually rising to lumbo- diaphragmatic bed	Undergoes rotation around the longitudinal axis
> 4 years	Situated in lumbo-diaphragmatic bed on the sides of the spine, retroperitoneal, between the XI-th thoracic vertebra and the II-nd-III-rd lumbar vertebrae	Medial

Scheme 6.1.

Developmental abnormalities of urinary system

Anomalous number	<u>Renal agenesis</u>	 Absence of kidney (more often, on the left) Absence of renal artery Compensatory hypertrophy of contralateral kidney
	<u>Renal aplasia</u>	 Embryonal bud is present The kidney is rudimentary, frequently with cystic degeneration and calcifications Hypoplasia of the renal artery Absence of pelvis and ureter - blind ureter
	<u>Supernumerary</u> <u>kidney</u>	 an independent kidney with its separate excretory system and vascularization ectopic kidney, most often inferior lumbar ectopic inflow of ureter

	<u>Duplication of</u> <u>kidney</u>	 common parenchymal mass, with two unequal systems of calyx-pelvis complete reno-ureteral duplicity incomplete reno-ureteral duplicity
Anomalous dimension	<u>Renal hypoplasia</u>	partialtotaluni- or bilateral
	<u>Renal</u> <u>hypertrophia</u>	 usually bilateral enlarged kidneys thickened renal parenchyma increased diameter of excretory cavities increased diameter of vessels Harmonious renal proportions Not often unilateral - compensatory hypertrophia (in case of agenesia, hypoplasia)
Anomalous shape	<u>Persistent fetal</u> lobulation	 normal – disappears at the age over 4 years irregular kidney contour, normal vasculature, normal excretory cavities
	<u>Renal fusion</u>	 bilateral symmetric bilateral asymmetric unilateral asymmetric Horseshoe kidney S-shaped (,,sigmoid") kidney L-shaped kidney Boulder-shaped kidney
Anomalous position	<u>Ectopia</u>	 cranial ectopia – intrathoracic kidney caudal ectopia – inferior lumbar, pelvic, presacral kidney cross ectopia
	<u>Malrotațion</u>	 anterior, posterior, external orientation of the hilum multiple renal arteries, atypical emergence

Anomalous structure of parenchyma	<u>Cystic dysplastic</u> <u>kidney diseases</u>	 multicystic kidney segmental cystic dysplasia renal hypoplasia with polycystic dysplasia multiple cysts associated with urinary way obstruction
	<u>Hereditary cystic</u> <u>kidney disease</u>	 hepatorenal polycystic disease cystic disease of the medulla microcystic renal disease with congenital nephrotic syndrome
	<u>Renal cysts in</u> <u>hereditary</u> <u>malformation</u> <u>syndromes</u>	 tuberous sclerosis or Bourneville's disease Lindaun disease hepatocerebrorenal syndrome
Anomalous renal vessels	 Multiple renal arteries - (accessory arteries) polar (aberrant) 43,5% (Hellstrőm) Absence of renal arteries, hypoplasia of renal arteries 	
Excretory tract malformations	 Duplicity of calyx, pelvis Microcalyx Megacalyx (hypoplasia of pyramids with intact cortical substance) – wide pelvic rods Blind ureter Diverticulum of calyx Ureterocele - sacciform dilatation of the terminal ureter 0.5-4cm (snakehead) Ectopia of ureteral ostia Retrocaval ureter Congenital hydronephrosis - parietal neuromuscular dysplasia Congenital ureteral stricture at the pyelocaliceal junction, ureterovesical junction Other malformations - stenosis, endoluminal membranes, torsions 	

Nuclear medicine. Renography.

Segments of renal curve.

- I. Vascular segment
- II. Accumulation segment (filtration/secretion)
- III. Segment of elimination (excretion)

Figure 6.5.

Pathological changes of renal curve

a) Obstructive changes at the level of the right kidney

b) Reduced renal function of the left kidney

c) Bilateral chronic renal failure

Bibliography

- 1. Grancea V. Bazele radiologiei și imagisticii medicale. București, 1996, 329 p.
- Misra R., Planner A., Uthappa M. A-Z of Chest Radiology. Cambridge Univercity Press, 2007, 211 p.
- 3. Monnier J.P., Tubiana J.M. Radiodiagnostic. Paris, Masson, 1999, 473 p
- Ouellette H., Tetrault P. Clinical radiology made ridiculously simple. USA, Miami, 2003
- Sutton D. Textbook of Radiology and Imaging. Volume I. Elseiver Science, 2003, 930 p.
- Sutton D. Textbook of Radiology and Imaging. Volume II. Elseiver Science, 2003, 1022 p.
- Şerban A.G. et al. Radiologie şi imagistica medicală. Editura a II. Bucureşti, 2009, 416 p.
- Volneanschi V., Matcovschi S., Dionidis I., Gîtlan I. Radiodiagnostic. Radioterapie. Chişinău, 2000, 382 p.
- Зегенидзе Г.А. ред. Клиническая рентгенорадиология. Руководство в 5 томах. Том 1. Москва, 1983. 433 стр.
- Илясова Е.Б., Чехонацкая М.Л., Приезжева В.Н. Лучевая диагностика. Москва, 2009, 275 стр.
- 11. Линдендратен Л,Д., Королюк И.П. Медицинская радиология. Москва, 671 стр.