Chest Imaging

Chest imaging - techniques

- Radiology
 - Conventional radiography (Chest X-ray)
 - PA (postero-anterior)
 - LL (lateral)
 - Spetial projections Oblique, supine AP, Lateral decubitus
 - ► <u>Fluoroscopy</u>
 - ► <u>Contrast examinations</u>
 - Bronchography
 - Pulmonary angiography
 - Conventional (linear) Tomography, Tomosynthesis
- Computed Tomography (CT)
- Nuclear Medicine
- Ultrasonography
- MRI

Simple chest Radiograph

Chest Radiograph

PA projection (posterior to anterior) – relation of X-ray beam to the patient (You can avoid PA/AP by describing all chest x ray films "frontal")

Chest Radiograph

Left Lateral projection

- Minimizes magnification of heart (heart closest to film)

Chest Radiograph

Supine AP projection

Lateral decubitus projection

Chest Imaging

Radiology

Contrast examinations

- Bronhography
- Pulmonary angiography
- Air contrast studies (not used anymore)
 - Diagnostic pneumothorax
 - Diagnostic pneumomediastinum

Bronhography

Bronhography

Bronhography

General (bilateral)

selective (unilateral)

Bronhography

Bronchiectasis

Pulmonary angiography

Pulmonary angiography

Linear Tomography

Chest radiograph

Linear Tomography

Linear Tomography of the mediasinum (different patients). Of all the structures visualized, the satisfactory sharpness is seen only at the level of the trachea.

Tomosynthesis

- At present, linear tomography is almost no longer used, but its principle is the basis of the tomosynthesis method.
- In tomosynthesis, a series of linear tomographies are performed at a predefined depth, with a fixed distance between sections, in a single acquisition.
- The information is digitally processed, creating a high quality final image.

Tomosynthesis

Chest radiograph

Tomosynthesis

Computed Tomography

- Role of CT
 - Main further investigation for most radiographic abnormality (eg nodule/mass) or to exclude disease with normal chest radiograph
 - Main investigation in PE, dissection, cancer trauma etc.

CHEST CT Axial plane

CHEST CT Axial plane

CHEST CT Coronal Reconstruction

CHEST CT Coronal Reconstruction

Nuclear Medicine

- Pulmonary ventilation scintigraphy
 - assesses bronchi permeability (bronchi obstruction)
- Pulmonary perfusion scintigraphy
 - assesses permeability of pumonary arteries (pulmonary thromboembolism)

Chest Imaging Nuclear Medicine

- Pulmonary ventilation scintigraphy
- Pulmonary perfusion scintigraphy

Thromembolism of pulmoany artery

Perfusion scintigraphy

Cold nodes

Ultrasound

- Limited use in thorax (non cardiac) due to air in lungs
- Assess pleural effusions
- Mainly used for procedures

Ultrasonography

Pleural metastasis Pleural effusion

MRI

- Multiple planes
- No radiation
- Common Indication
 - Pancoast tumour
 - Brachial plexus
 - Cardiac
 - Vascular (aorta)
- Usually targeted examination (unlike CT)

Coronal

MRI of the Chest

MRI of Aorta

PA view chest X-ray

MRI of Aorta

LL view chest X-ray

MRI of the Chest

Steps (order) of radiograph reading and reporting

- 1 Patient information
 - name, date of birth, sex, old films
- 2 Imaging techique data
 - time of image acquisition, radiograph, projection (view), contrast materials and other medicantions administered
- 3 Quality control
 - rotation (is the film centered?)
 - penetration (is it exposed properly?)
 - inspiration (is it a good inspiration film?)
- 4 Observations, description of findings
 - soft tissues, bony structures
 - mediastinum
 - · diaphragms, costophrenic angles
 - lung fields
- 5 Summary (impression, conclusion)

Rotation

Clavicular heads are equidistant from the spinous process of the thoracic vertebrae (midline)

Penetration

Adequate penetration of mediastinum (high quality radhiograph) – the vertebral bodies should just be visible through the heart

Normal penetration PA film

Overpenetrated PA film

Normal penetration PA film

Underpenetrated PA film

Inspiration

The diaphragm should be found at about the level of the 10th posterior rib or 6th anterior rib on good inspiration

Sex of Patient

Female

Male

Chest Radiograph Radiological anatomy - chest wall

Bony structures

- Ribs
- Clavicles
- Vertebrae
- Sternum
- Scapulae
- Humerus

Soft tissue structures

- Muscular
- Fat tissue

Chest Radiograph Radiological anatomy - chest wall

Bony structures

Chest Radiograph

Radiological anatomy – internal chest structures

- Heart
- Mediastinum
- Trachea
- Diaphragm
- Pleura
- Costo-phrenic angles
- Pulmonary hilum
- Pulmonary pattern (vasculature)

Retro sternal space

Retro cardiac space

Diaphragm and Pleural Surfaces

- Diaphragm
 - Dome-shaped
 - Costophrenic angles
- Normal pleural is not visible
- Interlobar fissures

Lung Hila

– Hilum

- Pulmonary arteries
- Pulmonary veins

Lung Fields

- Lungs
 - Linear and fine nodular shadows of pulmonary vessels
- Blood vessels
- 40% obscured by other tissue

Chest Radiograph Radiological anatomy

- Lung fields
 - Right
 - Left

ZONES OF THE CHEST RADIOGRAPH

Apex to a line drawn through the lower borders of the anterior ends of the 2nd costal cartilage.

From the 1st line to one drawn through the lower borders of the 4th costal cartilage & includes the Hila of the lungs

From the 2nd line to the bases of the lungs.

Lung Anatomy

- Trachea
- Carina
- Right and Left
 Pulmonary Bronchi
- Secondary Bronchi
- Tertiary Bronchi
- Bronchioles
- Alveolar Duct
- Alveoli

Lung Anatomy

- Right Lung
 - Superior lobe
 - Middle lobe
 - Inferior lobe
- Left Lung
 - Superior lobe
 - Inferior lobe

Lung Anatomy on Chest X-ray

- PA View:
 - Extensive overlap
 - Lower lobes extend high
- Lateral View:
 - Extent of lower lobes

Lung Anatomy on Chest X-ray

- PA View:
 - Extensive overlap
 - Lower lobes extend high
- Lateral View:
 - Extent of lower lobes

Lung Anatomy on Chest X-ray

- PA View:
 - Extensive overlap
 - Lower lobes extend high
- Lateral View:
 - Extent of lower lobes

Chest Radiograph

Oblique fissure

passes obliquely downwards from the T4/T5 vertebrae through the hilum ending at the anterior third of the diaphragm

Chest Radiograph

Horizontal fissure

passes horizontally from the **midpoint** of the **hilum** to the **anterior chest wall**

Chest Radiograph Radiological anatomy

Lungs. Lobs

- On right
 - **S**R
 - **M**R
 - IR
- On left
 - SL
 - IL

Fissures

- Horizontal
- Oblique

Fissures

Chest Radiograph Radiological anatomy Right Lung

- Superior lobe:
 - 1 apical;
 - 2 posterior;
 - 3 anterior
- Middle lobe:
 - 4 lateral;
 - 5 medial
- Inferior lobe:
 - 6 superior (apical);
 - 7 medial basal;
 - 8 anterior basal;
 - 9 lateral basal;
 - 10 posterior basal

Chest Radiograph Radiological anatomy Left Lung

- Superior lobe:

- 1 apical;
- 2 posterior;
- 3 anterior;
- 4 superior lingular;
- 5 inferior lingular
- Inferior lobe:
 - 6 superior (apical);
 - 8 anterior basal;
 - 9 lateral basal;
 - 10 posterior basal

Chest Radiograph

Radiological anatomy

Chest Radiograph

Radiological anatomy

• Lungs

Segments
a - right lung
b - left lung
1-10 - segments

Normal pulmonary pattern (pulmonary vasculature, pulmonary picture)

- ➢ Is formed by pulmonary arteries and veins
- Dichotomic division of vessels
- The diameter of each vessel is 2 times less than the diameter of the previuos
- Pulmonary pattern is more evident in the inferior regions
- Pulmonary pattern is no more seen at the distance of 1,5-2 cm from the chest wall

Steps (order) of radiograph reading and reporting

- 1 Patient information
 - name, date of birth, sex, old films
- 2 Imaging techique data
 - time of image acquisition, radiograph, projection (view), contrast materials and other medicantions administered
- 3 Quality control
 - rotation (is the film centered?)
 - penetration (is it exposed properly?)
 - inspiration (is it a good inspiration film?)
- 4 Observations, description of findings
 - soft tissues, bony structures
 - mediastinum
 - · diaphragms, costophrenic angles
 - lung fields
- 5 Summary (impression, conclusion)