Clinical Radiology

Every physician needs a basic understanding of diagnostic imaging to understand how to order the appropriate studies and to understand the resulting radiologist's report.

URINARY TRACT IMAGING - BASIC PRINCIPLES
METHODS OF INVESTIGATION

- ULTRASONOGRAPHY

- RADIOLOGY
 - Simple abdominal radiography
 - Intravenous urography
 - Retrograde pieloureterography
 - Cystography
 - Urethrography

- NUCLEAR MEDICINE
 - Static studies: static renal scintigraphy
 - Dynamic studies: renogram
 - CT (without, with contrast, Angio)
 - MRI (without, with contrast, Angio)
In imaging the urinary tract, the modality of choice for the initial examination will almost universally be *ultrasound* (*US*). US is inexpensive, immediate, painless, requires no sedation or anesthetic, is widely available, and is radiation free. US can be used to scan in any plane at the discretion of the operator, and whereas the technique is entirely operator dependent, most centers have staff with a high level of skill.
ULTRASOUND

- Doppler USG
- High frequency - high resolution but low penetration depth
- Renal - parenchyma
 - evaluate hematuria, solid mass, cysts
 - congenital abnormalities, stones
- Adrenal - CT/MRI better
 - Nodules, cysts, hemorrhage, location, tumors
- Bladder - examine wall, lesions
 - Transvaginal, transabdominal, transrectal
 - Normal wall >= 6 mm
 - bladder volume
- Prostate - transrectal, access for biopsy
ULTRASOUND

- Scrotal-
 - Evaluate: mass, pain, torsion, orchitis, epididymitis, hydrocele, hernia, varicoceles
 - Testicle: 4 x 3 cm
 - Veins: >2mm = varicocele - evaluate in erect position
Doppler Ultrasound
The kidneys-ureters-bladder is often the first imaging study performed to visualize the abdomen and urinary tract.

- The film is taken with the patient supine and should include the entire abdomen from the base of the sternum to the pubic symphysis.
- Can show bony abnormalities, calcification and large soft tissue masses.
Indications

- Plain urinary tract (PUT) film = Kidney Ureter Bladder (KUB) film
- Plain films are widely used in the management of stone diseases.

1. To be a preliminary film in anticipation of contrast administration.
2. To assess renal calculus disease before and after treatment.
3. To assess the presence of residual contrast from a previous imaging procedure.
4. To assess the position of drains and stents.
5. To help the investigation of blunt or penetrating trauma to the urinary tract.
1. Bowl gases or stools may obscure small stones.

2. Stones may be obscured by other structures such as bones or ribs.

3. Calcifications in pelvic veins or vascular structures may be confused with ureteral calculi.

4. Stones that are poorly calcified or composed of uric acid may be radiolucent.
Rapidly concentrated by kidneys and opacifies urinary tract

iodine nonionic contrast material

Reactions:

- Allergic, renal toxicity, shock
Involves instillation of contrast material to better visualize the collecting or lumenal structures of the kidneys, ureters, bladder, and urethra.

- This can be done after i/v injection or direct instillation into the urinary tract.

1) Intravenous urography
2) Cystourethrography
3) Retrograde urethrography
INTRAVENOUS UROGRAPHY

- IVU/ intravenous pyelogram is the classic modality of imaging the entire urethelial tract from pyelocalyceal system through the ureters and bladder
 - Excellent for indentifying small urethelial lesions as well as the severity of obstruction from calculi
 - Provides anatomical and qualitative functional information about the kidneys
1. Demonstrate the renal collecting systems and ureters.

2. Investigate the level of ureteral obstruction in renal units displaying delayed function.

3. Demonstrate intraoperative opacification of collecting system during ESWL or Per-cutaneous access to the collecting system.

4. Demonstrate renal function during emergent evaluation of unstable patients.

5. Demonstrate renal and ureteral anatomy in special circumstances (e.g., ptosis, after transureteroureterostomy, after urinary diversion).
Cystography

- Permits imaging of an opacified urinary bladder after retrograde instillation of contrast media through a urethral or suprapubic catheter
 - Imaging is performed to demonstrate a suspected urine leak, either from traumatic bladder rupture or after bladder surgery
 - Can also demonstrate a presence of a fistula between the bladder and vagina or to characterize bladder diverticuli
NORMAL MALE CYSTOGRAM
RETROGRADE URETHROGRAPHY (RUG)

- Complete evaluation of the urethra includes both antegrade and retrograde urethrography
 - Allows visualization of the male urethra
 - Used for evaluating a suspected traumatic urethral injury or urethral stricture
 - Can also be useful for diagnosis of a urethral diverticulum in females
 - Evaluate anterior and posterior urethra- strictures, trauma
 - 8-16 F foley in fossa navicularis, fill balloon with 1-2 mL and inject 30-50% contrast while filming obliquely
NORMAL RUG

A. Normal RUG using Foley technique

B. RUG - digital

C. Normal Retrograde Urethrogram

Balloon

Normal cone of bulbar urethra

Foley catheter

Bladder

Prostatic

Membranous

Penile urethra

Bulbar urethra

Normal “cone” of bulbar urethra
CT + ANGIO CT SCAN

- Often used to examine structures in the abdomen and pelvis (liver, pancreas, gallbladder, spleen, and intestines).

- CT Scans are a diagnostic tool that urologists use to detect and diagnose: recurrent urinary tract infections, sources of blood in the urine (hematuria), kidney stones, renal cysts, and masses. It can help urologists rule out prostate, bladder, and renal cancers.
CT + ANGIO CT

- Contrast- parenchyma, adrenals
- 3-D to evaluate vascular abnormality
- 100-150 mL i/v bolus injection
- Renal- stages:
 - Precontrast- stones, parenchyma, vascular calcifications, renal contour
 - 30 sec- arterial phase
 - Venous phase 100 sec- uniform enhancement of parenchyma (masses)
 - Excretory phase - collecting system
MRI

- No iodinated contrast
- Soft tissue resolution better than CT
- Contraindications - pacemaker, aneurysm clips
- T1 - fluid dark, fat bright
- T2 - fluid bright, fat dark
MRI
MRI

- **Renal** - will not evaluate stones, determine tumor

- **Adrenal** - contain more fat than cancers, bright on T2, isodense with liver

- **Bladder** - to determine invasion of wall by cell cancer or other pelvic neoplasms (on T2)

- **Prostate** - evaluate prostate cancer for capsular invasion. T1-distinct from surrounding fat/seminal vesicles (intermediate intensity), T2-peripheral zone (high intensity), central (intermediate), neurovascular bundles bright, seminal vesicles (high)
<table>
<thead>
<tr>
<th>CT</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses ionizing radiation, high-dose procedure</td>
<td>Uses magnetic resonance, no ionizing radiation</td>
</tr>
<tr>
<td>Excellent spatial resolution</td>
<td>Excellent contrast resolution</td>
</tr>
<tr>
<td>Actual scanning time measured in seconds (typically <10 s)</td>
<td>Actual scanning time measured in minutes (typically 45 min)</td>
</tr>
<tr>
<td>Rarely requires general anesthetic in children</td>
<td>Frequently requires general anesthetic in children, depending on age</td>
</tr>
<tr>
<td>Excellent at showing calcification</td>
<td>Poor at showing calcification (signal void)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Poor at showing edema or pathological changes in specific tissue types</td>
<td>Excellent at showing edema and pathological changes in specific tissue types</td>
</tr>
<tr>
<td>Usually requires intravenous contrast (unless looking for calcification when not required)</td>
<td>Usually requires intravenous administration of contrast (but certain sequences can be tailored if this is contraindicated)</td>
</tr>
<tr>
<td>No known risk of nephrogenic systemic fibrosis (NSF)</td>
<td>Risk of NSF (rare, but renal patients believed to be at increased risk)</td>
</tr>
<tr>
<td>Less expensive</td>
<td>Expensive</td>
</tr>
<tr>
<td>Usually available as an emergency imaging technique</td>
<td>Not routinely available as an emergency technique</td>
</tr>
<tr>
<td>No significant contraindications</td>
<td>Contraindicated in patients with any internal ferrous objects (pacemakers, defibrillators, recent orthopedic metalware, other implanted metallic devices, metallic foreign bodies)</td>
</tr>
<tr>
<td>Open-style scanners</td>
<td>Generally quite enclosed scanners – risk of claustrophobia</td>
</tr>
</tbody>
</table>
NUCLEAR MEDICINE

- Uses the radiation released by radionuclides (called nuclear decay) to produce images.

- A radionuclide, usually technetium-99m, is combined with different stable, metabolically active compounds to form a radiopharmaceutical that localizes to a particular anatomic or diseased structure (target tissue).

- Tracer goes to the target organ and can then be imaged with a gamma camera, which takes pictures of the radiation photons emitted by the radioactive tracer.

- Physiologic and anatomic info
ANGIOGRAPHY
AORTOGRAPHY: LEFT RENAL ARTERY THROMBOSIS
MR ANGIOGRAPHY

- Left renal artery stenosis
Imaging methods:
1. USG: stone shadow $\geq 3-4$ mm
2. Simple radiography of abdomen
3. CT of abdomen without contrast

Calcification which appears medullary over the left renal shadow.
Intravenous urography
CT of abdomen without contrast
Figure 4-4. A, Right ureteral calculus (arrow) overlying the sacrum is difficult to visualize on the plain film. B, The right posterior oblique study fails to confirm the location of the ureteral calculus. C, Computed tomography confirms this 6-mm calculus in the right ureter at the level of the third and fourth vertebrae.
Malignant kidney tumors at the ultrasound scan are characterized by:

• It deforms the kidney contour with increasing kidney size

• Upon the growth of the formation towards the pelvis, hydronephrosis develops as a result of its compression and displacement by the tumor, with deformation of the pyelocaliceal system.

• In most cases, tumors with dimensions of 2.0 cm are determined, those with smaller dimensions have an uncertain contour

• In most cases round or oval

• Predominantly hyperecogenic structure

• Small size formations have a homogeneous structure (iso-, hypo-, or hyperrecognized), often with a complete or incomplete hypoecogen halo, delimiting it from normal renal parenchyma. With tumor growth in size, its structure becomes more uneven due to the occurrence of necrosis, destruction, haemorrhage, cystic degeneration (hypo- or anecogenic), hyperintensive outbreaks of calcinate.
Minus defect in the pyelocaliceal system, with irregular contour, with extension to callyx
Tumors
Plus defect in the urinary bladder wall, with regular contour, homogenous structure
Native and postcontrast CT exam, native examination hypodens, nodular mass
CT with contrast showing left renal mass – malignant tumor
TUMOR
Hypervascular process left kidney
Renal tumour metastases

The most common metastasis:

- Lung 55%
- Liver 33%
- Bones 32%
- Adrenal glands 19%
- Contralateral kidney 15%
- Cerebelum 6%
- Spleen 5%
- Colon 4%
- Skin 3%
RENAL CONGENITAL MALFORMATIONS

A. NUMBER

1. Single congenital kidney-agenesis
2. Agenesia and bilateral renal aplasia are incompatible with life, from birth.
3. Supernumerary kidneys - double
Renal hypoplasia
In a 6-year-old male, CT exam - 3D reconstruction - a hypoplastic left kidney
B. SHAPE
HORSESHOE KIDNEY
C. LOCALISATION

Ectopic kidney

after 10 minutes
Ectopic kidney
RENAL CONGENITAL MALFORMATIONS

D. CONGENITAL MALFORMATIONS OF RENAL PARENCHIMA

RENAL CYSTS
Bosniak renal cyst classification

The Bosniak classification system for CT evaluation of renal cysts is helpful in determining both malignant risk and required follow-up and/or treatment.

Bosniak 1
- simple cyst, imperceptible wall, rounded
- work up: nil
- % malignant: ~ 0%

Bosniak 2
- minimally complex, a few thin (< 1mm) septa, thin Ca++; non-enhancing high-attenuation (due to proteinaceous or haemorrhagic fluid) renal lesions of less than 3 cm are also included in this category; these lesions are generally well marginated.
- work up: nil
- % malignant: ~ 0%

Bosniak 2F
- minimally complex but requiring follow up.
- increased number of septa, minimally thickened or enhancing septa or wall thick Ca++,
- hyperdense cyst that is:
 - > 3 cm diameter, mostly intrarenal (less than 25% of wall visible); no enhancement
- work up: needs ultrasound / CT follow up
- % malignant: ~ 25 %
Bosniak 3
indeterminate, thick or multiple septations, mural nodule, hyperdense on CT
% malignant: ~ 54%\(^6\)

Bosniak 4
clearly malignant, solid mass with large cystic or necrotic component
treatment: partial / total nephrectomy
% malignant: ~100%
Parapelvical right kidney cyst
Polycystic kidney disease:
CT vs MRI
Polytrauma

extensive skin emphysema kidney contusion.
Anatomy of the normal ureter on ascending urethrogram.

Urethral stricture
US was performed which demonstrate the left testicle with an abnormal orientation and without Doppler flow with normal echogenicity. The right testicle is normal.
Normal prostate gland

Axial T2
Prostate carcinoma

Ill-defined hypointense lesions in the peripheral zone of the prostate gland - this appearance is highly likely of prostatic carcinoma.
Medical imaging in urology

1. CT in the assessment of urogenital system pathology. Scanning phases. Advantages, disadvantages, indications, contraindications.
5. Imaging diagnosis of congenital urogenital malformations.
8. The imaging diagnosis of prostate tumors.